
“Dragon Graphics”

Forth, OpenGL and 3D-Turtle-Graphics

Bernd Paysan

August 29, 2009

Abstract

A 3D turtle graphics based on OpenGL is pre-
sented. The turtle moves in space, and leaves
a trail which defines the sceletton of the 3D
objects. The surface is created starting at
the turle’s position using a number of coordi-
nate systems (very populary: cylinder coordi-
nates). Normal vectors and texture coordinates
are computed automatically. Using an example,
the swap dragon, the name patron of this tech-
nology, the proceeding is demonstrated.

1 Introduction

On the last German Forth-Tagung, I pre-
sented direct OpenGL library bindings in Forth.
OpenGL is a very powerful 3D graphics li-
brary. However, OpenGL is quite low-level,
and provides “only” coordinate transformation
and drawing of strips, thus strings of triangles
or quads. Furthermore, OpenGL needs normal
vectors and texture coordinates that could be
computed automatically.

My intention was therefore to capsulate
OpenGL in an easier to use library, a sort of 3D
turtle graphics. Around new year 1999, there
was a discussion in comp.lang.forth about such a
3D turtle graphics. Dave Taliaferro introduced
a 3D turtle graphics written in pForth. Mar-
cel Hendrix soon afterwards implemented some-
thing comparable in iForth.

Both turtles can move through space, and
leave a trail composed of OpenGL objects, e.g.
cylinders or spheres. You can’t compose more
complex bodies.

The system introduced here starts with the
turtle principle, but it allows to describe bod-
ies. Since it doesn’t base on composition of
fixed parts, a real sceleton animation is possible,
something that even Hollywood tools can only

accomplish with a lot of effort. Not acciden-
tally the evening-filling films have insects, thus
exosceletons, as actors. Animations with en-
trosceletons typically restrict to short sequences.
3000 points (the dragon) aren’t easy to enter by
hand.

2 The Principle

Ordinary 2D turtle graphics can walk forward
and backward, and turn right or left. Thereby
it leaves trails, thus lines. The principle can
be extented to areas by filling the turtle drawn
polygons.

In space, the turtle is in its right element (un-
der water). Instead of crawling around clumsy,
it can swim up and down and roll around its
axis. You just must think about how its “trail”
should look like, and how to get from strips and
polygons to real bodies.

Instead of dropping pre-factured objects, this
3D turtle graphics allows to describe slices
through the body. These slice planes then are
connected to form abody. E.g. to create a cylin-
der, you connect two circles together. Circles are
approximated by polygons.

Turtle Turtle’

P2

P3

P4

P5

P6

P1

P3’

P4’

P5’

P6’

P1’

P2’

Figure 1: 3D-Turtle-Prinzip

The simple 3D turtle graphics doesn’t pro-
vide a 2D turtle graphics for these slices (which

1

3 A SIMPLE EXAMPLE

might be somewhat intuitive), but different co-
ordinate systems like cylinder coordinates. You
could use the plain 3D turtle, as well, to draw
outlines. The origin is defined by the turtle, the
orientation of the coordinate system is where the
turtle looks at.

3 A Simple Example

As simple example I’ll choose a tree. A tree is
composed of a trunk, and branches, which we’ll
approximate by hexagon-based cylinders. As
leaf, I’ll use a simple sphere approximation. Our

Figure 2: Tree

tree has a few parameters: the branch depth and
the number of branches. The tree shown above
also has a likelyhood with which the branches
fall, we won’t implement that here.

Let’s start with the root. First, we need a

lower surface, a hexagon. We leave the turtle as
is, and open a path with six points per round.
: tree (m n --)

.brown .color 6 open-path

The hexagons have an angle of π/3 per step,
we can memorize that one now. It defines the
step width for the functions that don’t take an
angle as parameter.
pi 3 fm/ set-dphi

Now we start with six points in the middle.
We first add the six points (the path is empty
at the beginning), and in the next round we set
them again, to set the normal vectors correctly
(all beginning is difficult — since the normal
vectors relate to the previous round, there are
none in the first round).
6 0 DO add LOOP next-round

6 0 DO set LOOP next-round

Around them in the next round we draw
the triangles that form the bottom hexagon.
The size of the triangles is computed using the
branch depth and multiplied by 0.03. Since
OpenGL itself uses floating point numbers, the
turtle graphics also works with such numbers.
6 0 DO dup !.03 fm* set-r LOOP next-round

Now I use a small trick to create sharp edges
— the 3D turtle graphics computes normal vec-
tors on a point as sum of the cross products of
the vectors left/behind and right/forward. An-
other slice at the same position causes that only
one direction is considered for the normal vec-
tors.
6 0 DO dup !.03 fm* set-r LOOP

Now we can procede with the real recursive
part, the branches:
branches ;

: branches (m n --) recursive

To avoid a double recursion, I use a loop for
the end recursion.
BEGIN dup WHILE

Even here we must start with a new round.
To avoid that the tree is flat in a single plain,
we roll it every branch by 54 degrees.

next-round pi !.3 f* roll-left

Next, we got corresponding to the branch
depth forward to draw a new ring.

dup !.1 fm* forward

6 0 DO dup !.03 fm* set-r LOOP

For the other branches we need a loop — ex-
cept for the last branch, that is done by the
endrecursion.

over 1 ?DO

Each branch rotates around the turtle’s eye
axis — I’ here is the end of the loop. The word
>turtle saves the current state of the turtle on

2

4.1 Tail 4 A MORE COMPLEX EXAMPLE: THE DRAGON

a turtle stack. turtle> takes it back again. I
use a local variable, since the turtle needs some
return stack, and therefore I and I’ aren’t ac-
cessible. The FP stack can be used only for
intermediate computations, since the C library
expects an empty stack.

After rotating we must turn right (with an an-
gle of 18 degree here), and then turn the turtle
back — so that the points of each slice fit to-
gether. The changed eye direction of the turtle
remains with this operation, only the alignment
in space is reconstructed.

2pi I I’ fm*/ { f: di |

>turtle

di roll-left pi 5 fm/ right

di roll-right

2dup 1- zweige

turtle> }

Just finish the loop
LOOP

and turn right for the end recursion (this time
we roll by 0 degrees).

pi 5 fm/ right

1- REPEAT

Finally, we close the path and draw a leaf.
close-path leaf 2drop ;

The leaf itself is a simple approximation to a
sphere:

: leaf (--)

.green .color

6 open-path 6 0 DO add LOOP

next-round !.1 forward

6 0 DO !.2 set-r LOOP

next-round !.2 forward

6 0 DO !.2 set-r LOOP

next-round !.1 forward

6 0 DO !.1 set-r LOOP

next-round

6 0 DO !0 set-r LOOP

close-path .brown .color ;

These aren’t all the sources, we need some
overhead to change the view to the tree. The
whole sources are in the file tree.str (3D
graphics) and tree.m (user interface).

4 A More Complex Exam-

ple: The Dragon

Since the dragon is really complex, I describe
only the most important points. In typical Forth
tradition the dragon is briddled by the tail.

Figure 3: Swap-Drache

4.1 Tail

The dragon is composed of single segments, wich
mainly are a circle with a point:
: dragon-segment (ri ro n --)

{ f: ri f: ro | next-round

ro set-r 1 DO ri set-r LOOP

ro !-0.0001 set-rp !0 phi df! } ;

To wag the tail nicely, and to synchronize all
the other movements, there’s a timer that is
turned into an angle [0, 2π[.
Variable tail-time

: time’ (-- 0..2pi)

tail-time @ &24 &60 &30 * * um* drop

0 d>f !$2’-8 pi f* f* ;

The real tail wagging now computes using seg-
ment number and time — the result is a trans-
lation left or right.
: tail-wag (n -- f)

>r pi r@ 1 + fm* !.2 f* time’ f+

fsin r> 2+ dup * 1+ fm/ !30 f* ;

The origin of the dragon is in the womb, not
at the tail’s point. The dragon however is drawn
beginning with the tail’s point — thus we first
must compute a compensation, otherwise the
tail wags with the dragon.1

: tail-compensate (n -- f) !0

0 DO I 2+ tail-wag f+ !1.1 f/ LOOP

!1.1 !20 f** f* fnegate ;

The tail then is quite simple: first back to the
tail’s point, and set a point as initial polygon.

1Something like that somethimes happens in politics.

3

4.4 Head 4 A MORE COMPLEX EXAMPLE: THE DRAGON

Then, step by step forward, and draw a dragon
segment. Each second segment has a point up-
wards, and scaling makes the tail thicker and
thicker. The radius furthermore is enlarged, too.
This scaling first has to be undertaken into the
other direction. As texture mapping function, I
use z, φ, thus the movement of the turtle as one
texture coordinate and the angle against verti-
cal for the other.
: dragon-tail (ri r+ h n -- ri h)

zphi-texture

{ f: ri f: r+ f: h n |

!1.05 !-20 f**

!1.1 !-20 f** !1 scale-xyz

h -&15 fm* &20 tail-compensate

h -&25 fm* forward-xyz

n 1+ 0 DO add LOOP

20 0 DO !0 i 2+ tail-wag h forward-xyz

pi &90 fm/ up

ri fdup I 1 and 0= IF r+ f+ THEN

n dragon-segment

!1.05 !1.1 !1 scale-xyz

!.025 ri f+ to ri

LOOP ri r+ h } ;

Figure 4: Tail

4.2 Body

The dragon’s body is composed out of the same
segments as the tail, but instead of growing fur-
ther, the body must close again.
: dragon-wamp (ri r+ h ri+ n -- ri’)

{ f: ri f: r+ f: h f: ri+ n |

8 0 DO h forward

ri fdup I 1 and 0= IF r+ f+ THEN

n dragon-segment

ri+ ri f+ to ri !-0.02 ri+ f+ to ri+

LOOP ri ri+ !.02 f+ f- } ;

4.3 Neck

The neck also consists of these segments, how-
ever, we have here two different growth func-

Figure 5: Body

tions, one for the shoulder (fast shrink), and one
for the real neck (slow shrink). The shoulder
turns left, the neck turns right again. There-
fore the function dragon-neck-part is called
two times.
: dragon-neck-part

(ri r+ h factor angle n m -- ri’)

swap { f: ri f: r+ f: h f: factor f:

angle n |

0 ?DO h forward angle left

pi &30 fm/

time’ fsin !.01 f* f+ down

factor ri f* to ri

ri fdup I 1 and 0= IF r+ f+ THEN

n dragon-segment

LOOP ri } ;

: dragon-neck (ri r+ h angle n --)

{ f: r+ f: h f: angle n |

r+ h !.82 angle

n 4 dragon-neck-part

r+ h !.92 angle f2/ fnegate

n 6 dragon-neck-part

fdrop close-path } ;

Figure 6: Neck

4.4 Head

The head is composed using a rectangle with
rounded edges and a slot for the tooths. This
function isn’t easy to generate, therefore I use

4

4.5 Wing 4 A MORE COMPLEX EXAMPLE: THE DRAGON

an array for the coordinates, bu tjust for the left
half of the head; the right half is obtained by
mirroring at the Y axix. The sizes of the slices
is about the same as for the body. The head
has a different texture, one with eyes, nose, and
teeth.
Create head-xy

!0.28 f>fs , !0.0 f>fs ,

!0.30 f>fs , !0.5 f>fs ,

!0.25 f>fs , !0.6 f>fs ,

!0.05 f>fs , !0.6 f>fs ,

!0.00 f>fs , !0.5 f>fs ,

!-.05 f>fs , !0.6 f>fs ,

!-.10 f>fs , !0.6 f>fs ,

!-.15 f>fs , !0.5 f>fs ,

: dragon-head (t1 shade --) !text

pi 6 fm/ down !1.2 !.4 !.4 scale-xyz

!-.65 forward

!.5 x-text df!

16 open-path 16 0 DO add LOOP

6 0 DO

I 5 = IF !.25

ELSE I 0= IF !0 ELSE !.35 THEN

THEN forward

>matrix

pi !0.1 f* I 2* 5 - fm* fcos

fdup !.5 f+ !1 scale-xyz

next-round

head-xy 16 cells bounds DO

I sf@ I cell+ sf@ set-xy

2 cells +LOOP

head-xy dup 14 cells + DO

I sf@ I cell+ sf@

!1’-6 f+ fnegate set-xy

-2 cells +LOOP

matrix>

LOOP

!1 x-text df!

close-path ;

Figure 7: Head

The second neck and head are drawn with cor-
responding negative angles. Like in the previous
example, I save the state of the turtle to start
from the same point again.

Figure 8: Second Neck

4.5 Wing

The wing has a simple, flat hexagon as slice.
This hexagon provides the bending of the wing,
and models the “fingers”.
: wing-step { f: f2 f: f3 |

next-round

!0 f2 fnegate set-xy

f3 f2/ f2 fnegate set-xy

f3 f3 !.125 f* set-xy

f3 !.001 f- f3 !.125 f* !.001 f+ set-xy

f3 f2/ f2 set-xy

!0.001 f2 fmin f2 set-xy }

;

The folding function of the wing supplys a
movement of arm/hand and finger dependent on
time for a up/downward movement of the wing.
f2 is an additional term to the cosine, f1 a mul-
tiplicative.
: wing-fold (f1 f2 --)

time pi 5 fm/ f- fcos f+ f* down ;

The movements and the composing of the
wing are complicated; therefore I don’t explain
all details. Here first I open a path, too. Then,
step by step, shoulder, arm, and finally the fin-
gers are drawn.
: wing (--)

8 open-path !.9 scale

6 0 DO add LOOP

!.02 !1.2 wing-step !.3 forward Shoulder

pi &10 fm/ down pi &8 fm/ roll-left

time’ fsin !1.3 f* !.2 f+ right

!.02 !1 wing-step Upper arm

pi 5 fm/ up pi &10 fm/ right !1 forward

pi 5 fm/ down pi &20 fm/ left

time’ fcos !-.25 f* !.5 f- roll-left

time’ fcos pi 6 fm/ f* down

!.02 !1 wing-step Lower arm

time’ !1 f- fcos !1 f+ pi 8 fm/ f* right

pi -3 fm/ !-1.0 wing-fold

pi &10 fm/ left !1 forward

5

5 OUTLOOK

pi 4 fm/ !-1.5 wing-fold

!.02 !2 wing-step

2 0 DO !.025 forward

pi &12 fm/ !1.2 wing-fold

pi &10 fm/ right !.05 forward

!.02 !2 wing-step Finger

LOOP

!0 !2 wing-step Closing step

close-path ;

The wing is the same left and right. The sym-
metry is created by mirroring on the Y axis.
Here, I must say another word about OpenGL:
only the front sides of triangles really are drawn.
The backfaces are culled. Such a mirror opera-
tion turns all fronts into “backs”, since the turn
changes. So I must tell OpenGL, and that’s
whatflip-clock does.
: right-wing (h --)

pi/4 roll-right pi/2 right

!2 f* forward pi !.3 f* roll-left

zp-texture !.13 y-text df! wing ;

: left-wing (h --) !1 !-1 !1 scale-xyz

flip-clock right-wing flip-clock ;

Figure 9: Wing

4.6 The Complete Dragon

I’ll leave the legs out here, they aren’t that inter-
esting, since they consist of static parts (mostly
long ellipsoids and bowed claws). Let’s see the
main program:

First of all, the dragon wags up and down with
each wing fold. Then, for the dragon segments
I must set the angle.
: dragon-body

(t0 s t3 s t1 s t3 s t2 s n --) >r

time’ fsin !.1 f* !0 !0 forward-xyz

pi f2* r@ fm/ set-dphi

r@ 1+ open-path

Then as said above, I draw the tail.
!.1 !.3 !.2 r@ dragon-tail

The return parameters of the tail are recycled
in the body.
r> { f: ri f: r+ f: h n |

ri r+ h !.06 n dragon-wamp fdrop

I draw head and neck left and right starting
at the same position, with negated angle param-
eters for the other side.
>turtle

ri r+ h !10 grad>rad n dragon-neck

2dup dragon-head 2swap !text

turtle> >matrix

ri r+ h !-10 grad>rad n dragon-neck

dragon-head 2drop

matrix>

Then, the texture changes and I draw the two
wings.
2dup !text

h !2 f* forward

>turtle h right-wing turtle>

>turtle h left-wing turtle>

I draw the legs with the same approach.
h !-6 f* forward

>turtle right-leg turtle>

>turtle left-leg turtle>

2drop 2drop } ;

5 Outlook

What can you do with that, and what’s miss-
ing? A serious application is certainly the vi-
sualization of three dimensional data. Less “se-
rious” applications would be computer games.
They require collision detection, and quite likely
a hierarchical model, to put spaces and mov-
ing/moveable objects in. Also different level of
detail depending on the size of the object on the
screen now must be programmed by hand. If
there is another possibility for animated objects
I’m not sure.

The usage of different textures is quite com-
plex at the moment; they must be carried on the
stack. Here, the 3D turtle object should provide
better tools.

And again, Windows makes difficulties. Even
though one can’t say that the Mesa library un-
der Linux is bug-free, it at least implements
all features of OpenGL 1.2. The Windows 95
OpenGL library from SGI/Microsoft omits tex-
tures, and doesn’t work very reliably. Since SGI
opened up their GLX sources, the remaining
Linux problems and the missing hardware sup-

6

6.2 Turtle state 6 APPENDIX: INSTRUCTIONS OF THE 3D TURTLE GRAPHICS

port (only 3Dfx supported now) will be solved
in the near future.

You can download all that under
http://www.jwdt.com/~paysan/bigforth.html

6 Appendix: Instructions of

the 3D Turtle Graphics

6.1 Navigation

left (f −−) turns the turtle’s head left

right (f −−) turns the turtle’s head right

up (f −−) turns the turtle’s head up

down (f −−) turns the turtle’s head down

roll-left (f −−) rolls the turtle’s head left

roll-right (f −−) rolls the turtle’s head right

x-left (f −−) rotate the turtle left around the
x axis

x-right (f −−) rotate the turtle right around
the x axis

y-left (f −−) rotate the turtle left around the
y axis

y-right (f −−) rotate the turtle right around
the y axis

z-left (f −−) rotate the turtle left around the
z axis

z-right (f −−) rotate the turtle right around
the z axis

forward (f −−) move the turtle in z direction

forward-xyz (fx fy fz −−) move the turtle

degrees (f −−) steps per circle. Common
cases: 2π for radians (default), 360 for deg,
64 for asian degrees, or whatever you find
suits your application best.

scale (f −−) scales the turtle’s step width by
the factor f

scale-xyz (fx fy fz −−) scale the turtle’s step
width in x, y, and z direction

flip-clock (−−) change default coordinate
from left hand to right or the other way
round. Use that after scale-xyz with an
odd number of negative scale factors.

6.2 Turtle state

>matrix (−−) push turtle matrix on the ma-
trix stack

matrix> (−−) pop turtle matrix from the
matrix stack

matrix@ (−−) copy turtle matrix from the
stack

1matrix (−−) initialize turtle state with the
identity matrix

matrix* (−−) multiply current transforma-
tion matrix with the one on the top of the
matrix stack (and pop that one)

clone (−− o) create a clone of the turtle

>turtle (−−) clone the turtle and use it as
current object

turtle> (−−) destroy current turtle and pop
previos incarnation

6.3 Pathes

open-path (n −−) opens a path with n points
in the first round

close-path (−−) closes a path and performs
the final rendering action

next-round (−−) closes a round and opens
the next one

open-round (n −−) opens a round with n
points (obsolete)

close-round (−−) closes a round (by copying
the first point as last point) and performs
the per-round rendering action (obsolete)

finish-round (−−) performs the per-round
rendering action without closing the round
first (this is for open objects) (obsolete)

add-xyz (fx fy fz −−) adds the point at the
x, y, z-coordinates relative to the turtle. x
is up from the turtle, y right, z before. The
point is connected to the same point of the
previous round as the point before.

set-xyz (fx fy fz −−) sets a point with x, y, z-
coordinates. The point is connected to the
next point of the previous round as the
point before.

7

6.4 Drawing Modes 6 APPENDIX: INSTRUCTIONS OF THE 3D TURTLE GRAPHICS

drop-point (−−) skips one point, set-xyz is
equal to add-xyz drop-point

set-rpz (fr fphi fz −−) set with cylinder co-
ordinates

set-xy (fx fy −−) set-xyz with z = 0

set-rp (fr fphi −−) set with cylinder coordi-
nates, z = 0

set-r (fr −−) set with cylinder coordinates,
z = 0, φ = φcur , φcur = φcur + ∆φ

set (−−) set at current turtle location

add-rpz (fr fphi fz −−) add with cylinder
coordinates

add-xy (fx fy −−) add-xyz with z = 0

add-rp (fr fphi −−) add with cylinder coor-
dinates, z = 0

add-r (fr −−) add with cylinder coordinates,
z = 0, φ = φcur , φcur = φcur + ∆φ

add (−−) add at current turtle location

set-dphi (fdphi −−) sets ∆φ

6.4 Drawing Modes

points (−−) draw only vertex points

lines (−−) draw a wire frame

triangles (−−) draw solid triangles

textured (−−) draw textured triangles

smooth (−−) variable: set on for smooth nor-
mals when rendering textured, set off for
non-smooth rendering

xy-texture (−−) texture mapping based on
x and y coordinates

zphi-texture (−−) texture mapping based
on z and φ coordinates

rphi-texture (−−) texture mapping based
on r and φ coordinates

zp-texture (−−) texture mapping based on
z and the point number coordinates

load-texture (addr u −− t) loads a ppm file
with the name addr u and returns the tex-
ture index t

set-light (par1..4 par n −−) Set light source
n

8

